Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.202
Filtrar
1.
Front Aging Neurosci ; 16: 1373252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665899

RESUMO

Manual motor performance declines with age, but the extent to which age influences the acquisition of new skills remains a topic of debate. Here, we examined whether older healthy adults show less training-dependent performance improvements during a single session of a bimanual pinch task than younger adults. We also explored whether physical and cognitive factors, such as grip strength or motor-cognitive ability, are associated with performance improvements. Healthy younger (n = 16) and older (n = 20) adults performed three training blocks separated by short breaks. Participants were tasked with producing visually instructed changes in pinch force using their right and left thumb and index fingers. Task complexity was varied by shifting between bimanual mirror-symmetric and inverse-asymmetric changes in pinch force. Older adults generally displayed higher visuomotor force tracking errors during the more complex inverse-asymmetric task compared to younger adults. Both groups showed a comparable net decrease in visuomotor force tracking error over the entire session, but their improvement trajectories differed. Young adults showed enhanced visuomotor tracking error only in the first block, while older adults exhibited a more gradual improvement over the three training blocks. Furthermore, grip strength and performance on a motor-cognitive test battery scaled positively with individual performance improvements during the first block in both age groups. Together, the results show subtle age-dependent differences in the rate of bimanual visuomotor skill acquisition, while overall short-term learning ability is maintained.

2.
Cell Rep ; 43(4): 114059, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602873

RESUMO

Thalamocortical loops have a central role in cognition and motor control, but precisely how they contribute to these processes is unclear. Recent studies showing evidence of plasticity in thalamocortical synapses indicate a role for the thalamus in shaping cortical dynamics through learning. Since signals undergo a compression from the cortex to the thalamus, we hypothesized that the computational role of the thalamus depends critically on the structure of corticothalamic connectivity. To test this, we identified the optimal corticothalamic structure that promotes biologically plausible learning in thalamocortical synapses. We found that corticothalamic projections specialized to communicate an efference copy of the cortical output benefit motor control, while communicating the modes of highest variance is optimal for working memory tasks. We analyzed neural recordings from mice performing grasping and delayed discrimination tasks and found corticothalamic communication consistent with these predictions. These results suggest that the thalamus orchestrates cortical dynamics in a functionally precise manner through structured connectivity.


Assuntos
Aprendizagem , Tálamo , Tálamo/fisiologia , Animais , Camundongos , Aprendizagem/fisiologia , Córtex Cerebral/fisiologia , Memória de Curto Prazo/fisiologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Camundongos Endogâmicos C57BL , Masculino
3.
Front Psychiatry ; 15: 1253199, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38645416

RESUMO

Motor dysfunction is increasingly being viewed as a core characteristic of autism spectrum disorder (ASD) in children. In particular, children with ASD have difficulty in learning new motor skills and there is a need to develop effective methods to improve this. Previous research has found that children with ASD may retain the ability to implicitly learn motor skills in comparison to their explicit learning of motor skills, which is typically impaired. This literature mini review focuses on summarizing the study of implicit learning in the acquisition of motor skills in children with ASD. First, we briefly introduce several common implicit learning methods in children's motor skill learning. Second, we focus on the role of two important implicit learning approaches in motor skill learning, namely, an external focus of attention and analogy learning. Finally, based on our review of the existing studies, we present an outlook for future research and the areas that need to be improved in the practical teaching of implicit learning in the acquisition of motor skills in children with ASD.

4.
Biomed Eng Lett ; 14(3): 593-604, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38645588

RESUMO

Learning new motor skills is often challenged by sensory mismatches. For reliable sensory information, people have actively employed sensory intervention methods. Visual assistance is the most popular method to provide sensory information, which is equivalent to the knowledge of performance (KP) in motor tasks. However, its efficacy is questionable because of visual-proprioceptive mismatch as well as heavy intrinsic visual and cognitive engagement in motor tasks. Electrotactile intervention is a promising technique to address the current limitations, as it provides KP using tactile feedback that has a close neurophysiological association with proprioception. To test its efficacy, we compared the effects of visual and electrotactile assistance on hitting point localization of the table-tennis racket during virtual-reality table-tennis game. Experimental results suggest that location-based electrotactile feedback outperforms visual assistance in localizing the hitting point on a table-tennis racket during virtual-reality table-tennis game. Our study showed the potential of electrotactile intervention for improving the efficacy of new motor skill training.

5.
Front Psychol ; 15: 1290596, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650905

RESUMO

The topic of attentional focus (focus of attention, FOA) in musical learning and performance has recently received increasing interest, as the growing number of empirical studies inspired by the established FOA paradigm in sports by Wulf and colleagues in 1998. The current systematical review aims at collecting, abstracting, and categorizing relevant data to show which kinds of FOA instructions were applied in experimental designs and what kinds of dependent variables were used to measure the effects of FOA instruction on musical performance. The three main inclusion criteria in the selection process were experimental design, detailed descriptions of FOA instructions, and outcome measures (OMs). A systematic search was conducted with a complex search term in four scientific databases in March 2023. For presenting and synthesizing results, we used data collection and an inductive-deductive data categorization. Fifteen studies with a total sample size of 401 participants were included out of 387 records initially identified. We collected 53 different FOA instruction citations from the 15 studies and classified them into 9 FOA subcategories, of which the most applied were bodily focus (21%), sound focus (15%), and visual focus (14%). Selected studies used 63 OMs that were abstracted to 10 different OM categories with expert ratings (27%) and acoustical analysis (22%) as the most applied dependent variables. Data categorization and abstraction of additional study information show multiple combinations of FOA instructions, OMs, participants' instruments and expertise, and musical tasks. Finally, studies show no consistent results of superiority of either external or internal or otherwise different FOA considering positive effects on musical performance. Limitations of the review lie in the small study sample, possible criticism of applied eligibility criteria, and subjectivity of data categorization. We propose a research agenda with a more exploratory approach that comprehensively and qualitatively examines the dimensions of musical goals to create a database that could provide a foundation for developing a music-specific FOA model.

6.
J Physiol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568869

RESUMO

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.

7.
Percept Mot Skills ; : 315125241246361, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38657202

RESUMO

Our purpose in this study was to determine the effects of a virtual reality intervention delivering specific motivational motor learning manipulations of either autonomy support (AS) or enhanced expectancies (EE) on frontal plane single-leg squatting kinematics. We allocated 45 participants (21 male, 24 female) demonstrating knee, hip, and trunk frontal plane mechanics associated with elevated anterior cruciate ligament injury risk to one of three groups (control, AS, or EE). Participants mimicked an avatar performing five sets of eight repetitions of exemplary single-leg squats. AS participants were given the added option of choosing the color of their avatar. EE participants received real-time biofeedback in the form of green highlights on the avatar that remained on as long as the participant maintained pre-determined 'safe' frontal plane mechanics. We measured peak frontal plane knee, hip, and trunk angles before (baseline) and immediately following (post) the intervention. The control group demonstrated greater increases in knee abduction angle (Δ = +2.3°) than did the AS (Δ = +0.1°) and EE groups (Δ = -0.4°) (p = .003; η2p = .28). All groups demonstrated increased peak hip adduction (p = .01, ηp2 = .18) (control Δ = +1.5°; AS Δ = +3.2°; EE Δ = +0.7°). Hip adduction worsened in all groups. AS and EE motivation strategies appeared to mitigate maladaptive frontal plane knee mechanics.

8.
Behav Brain Res ; 466: 115007, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648867

RESUMO

Although active touch in rodents arises from the forepaws as well as whiskers, most research on active touch only focuses on whiskers. This results in a paucity of tasks designed to assess the process of active touch with a forepaw. We develop a new experimental task, the Reach-to-Grasp and Tactile Discrimination task (RGTD task), to examine active touch with a forepaw in rodents, particularly changes in processes of active touch during motor skill learning. In the RGTD task, animals are required to (1) extend their forelimb to an object, (2) grasp the object, and (3) manipulate the grasped object with the forelimb. The animals must determine the direction of the manipulation based on active touch sensations arising during the period of the grasping. In experiment 1 of the present study, we showed that rats can learn the RGTD task. In experiment 2, we confirmed that the rats are capable of reversal learning of the RGTD task. The RGTD task shared most of the reaching movements involved with conventional forelimb reaching tasks. From the standpoint of a discrimination task, the RGTD task enables rigorous experimental control, for example by removing bias in the stimulus-response correspondence, and makes it possible to utilize diverse experimental procedures that have been difficult in prior tasks.

9.
Elife ; 132024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629828

RESUMO

The presence of global synchronization of vasomotion induced by oscillating visual stimuli was identified in the mouse brain. Endogenous autofluorescence was used and the vessel 'shadow' was quantified to evaluate the magnitude of the frequency-locked vasomotion. This method allows vasomotion to be easily quantified in non-transgenic wild-type mice using either the wide-field macro-zoom microscopy or the deep-brain fiber photometry methods. Vertical stripes horizontally oscillating at a low temporal frequency (0.25 Hz) were presented to the awake mouse, and oscillatory vasomotion locked to the temporal frequency of the visual stimulation was induced not only in the primary visual cortex but across a wide surface area of the cortex and the cerebellum. The visually induced vasomotion adapted to a wide range of stimulation parameters. Repeated trials of the visual stimulus presentations resulted in the plastic entrainment of vasomotion. Horizontally oscillating visual stimulus is known to induce horizontal optokinetic response (HOKR). The amplitude of the eye movement is known to increase with repeated training sessions, and the flocculus region of the cerebellum is known to be essential for this learning to occur. Here, we show a strong correlation between the average HOKR performance gain and the vasomotion entrainment magnitude in the cerebellar flocculus. Therefore, the plasticity of vasomotion and neuronal circuits appeared to occur in parallel. Efficient energy delivery by the entrained vasomotion may contribute to meeting the energy demand for increased coordinated neuronal activity and the subsequent neuronal circuit reorganization.


Assuntos
Encéfalo , Cerebelo , Camundongos , Animais , Cerebelo/fisiologia , Nistagmo Optocinético , Neurônios , Aprendizagem , Estimulação Luminosa/métodos
10.
Int J Neural Syst ; : 2450037, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655914

RESUMO

Vision and proprioception have fundamental sensory mismatches in delivering locational information, and such mismatches are critical factors limiting the efficacy of motor learning. However, it is still not clear how and to what extent this mismatch limits motor learning outcomes. To further the understanding of the effect of sensory mismatch on motor learning outcomes, a reinforcement learning algorithm and the simplified biomechanical elbow joint model were employed to mimic the motor learning process in a computational environment. By applying a reinforcement learning algorithm to the motor learning of elbow joint flexion task, simulation results successfully explained how visual-proprioceptive mismatch limits motor learning outcomes in terms of motor control accuracy and task completion speed. The larger the perceived angular offset between the two sensory modalities, the lower the motor control accuracy. Also, the more similar the peak reward amplitude of the two sensory modalities, the lower the motor control accuracy. In addition, simulation results suggest that insufficient exploration rate limits task completion speed, and excessive exploration rate limits motor control accuracy. Such a speed-accuracy trade-off shows that a moderate exploration rate could serve as another important factor in motor learning.

11.
Neuroimage Clin ; 42: 103601, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38579595

RESUMO

BACKGROUND: Strokes frequently result in long-term motor deficits, imposing significant personal and economic burdens. However, our understanding of the underlying neural mechanisms governing motor learning in stroke survivors remains limited - a fact that poses significant challenges to the development and optimisation of therapeutic strategies. OBJECTIVE: This study investigates the diversity in motor learning aptitude and its associated neurological mechanisms. We hypothesised that stroke patients exhibit compromised overall motor learning capacity, which is associated with altered activity and connectivity patterns in the motor- and default-mode-network in the brain. METHODS: We assessed a cohort of 40 chronic-stage, mildly impaired stroke survivors and 39 age-matched healthy controls using functional Magnetic Resonance Imaging (fMRI) and connectivity analyses. We focused on neural activity and connectivity patterns during an unilateral motor sequence learning task performed with the unimpaired or non-dominant hand. Primary outcome measures included task-induced changes in neural activity and network connectivity. RESULTS: Compared to controls, stroke patients showed significantly reduced motor learning capacity, associated with diminished cerebral lateralization. Task induced activity modulation was reduced in the motor network but increased in the default mode network. The modulated activation strength was associated with an opposing trend in task-induced functional connectivity, with increased connectivity in the motor network and decreased connectivity in the DMN. CONCLUSIONS: Stroke patients demonstrate altered neural activity and connectivity patterns during motor learning with their unaffected hand, potentially contributing to globally impaired motor learning skills. The reduced ability to lateralize cerebral activation, along with the enhanced connectivity between the right and left motor cortices in these patients, may signify maladaptive neural processes that impede motor adaptation, possibly affecting long-term rehabilitation post-stroke. The contrasting pattern of activity modulation and connectivity alteration in the default mode network suggests a nuanced role of this network in post-stroke motor learning. These insights could have significant implications for the development of customised rehabilitation strategies for stroke patients.

12.
Schizophr Res ; 267: 291-300, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599141

RESUMO

Schizophrenia is a mental health disorder that often includes psychomotor disturbances, impacting how individuals adjust their motor output based on the cause of motor errors. While previous motor adaptation studies on individuals with schizophrenia have largely focused on large and consistent perturbations induced by abrupt experimental manipulations, such as donning prism goggles, the adaptation process to random perturbations, either caused by intrinsic motor noise or external disturbances, has not been examined - despite its ecological relevance. Here, we used a unified behavioral task paradigm to examine motor adaptation to perturbations of three causal structures among individuals in the remission stage of schizophrenia, youth with ultra-high risk of psychosis, adults with active symptoms, and age-matched controls. Results showed that individuals with schizophrenia had reduced trial-by-trial adaptation and large error variance when adapting to their own motor noise. When adapting to random but salient perturbations, they showed intact adaptation and normal causal inference of errors. This contrasted with reduced adaptation to large yet consistent perturbations, which could reflect difficulties in forming cognitive strategies rather than the often-assumed impairments in procedural learning or sense of agency. Furthermore, the observed adaptation effects were correlated with the severity of positive symptoms across the diagnosis groups. Our findings suggest that individuals with schizophrenia face challenges in accommodating intrinsic perturbations when motor errors are ambiguous but adapt with intact causal attribution when errors are salient.

13.
Cell Mol Life Sci ; 81(1): 116, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438808

RESUMO

Microglia regulate synaptic function in various ways, including the microglial displacement of the surrounding GABAergic synapses, which provides important neuroprotection from certain diseases. However, the physiological role and underlying mechanisms of microglial synaptic displacement remain unclear. In this study, we observed that microglia exhibited heterogeneity during the displacement of GABAergic synapses surrounding neuronal soma in different cortical regions under physiological conditions. Through three-dimensional reconstruction, in vitro co-culture, two-photon calcium imaging, and local field potentials recording, we found that IL-1ß negatively modulated microglial synaptic displacement to coordinate regional heterogeneity in the motor cortex, which impacted the homeostasis of the neural network and improved motor learning ability. We used the Cre-Loxp system and found that IL-1R1 on glutamatergic neurons, rather than that on microglia or GABAergic neurons, mediated the negative effect of IL-1ß on synaptic displacement. This study demonstrates that IL-1ß is critical for the regional heterogeneity of synaptic displacement by coordinating different actions of neurons and microglia via IL-1R1, which impacts both neural network homeostasis and motor learning ability. It provides a theoretical basis for elucidating the physiological role and mechanism of microglial displacement of GABAergic synapses.


Assuntos
Aprendizagem , Microglia , Cálcio , Neurônios GABAérgicos , Interleucina-1beta , Sinapses
14.
Front Neurol ; 15: 1286856, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38450075

RESUMO

Purpose: Evidence suggests that transcranial direct current stimulation (tDCS) can enhance motor performance and learning of hand tasks in persons with chronic stroke (PCS). However, the effects of tDCS on the locomotor tasks in PCS are unclear. This pilot study aimed to: (1) determine aggregate effects of anodal tDCS combined with step training on improvements of the neural and biomechanical attributes of stepping initiation in a small cohort of persons with chronic stroke (PCS) over a 4-week training program; and (2) assess the feasibility and efficacy of this novel approach for improving voluntary stepping initiation in PCS. Methods: A total of 10 PCS were randomly assigned to one of two training groups, consisting of either 12 sessions of VST paired with a-tDCS (n = 6) or sham tDCS (s-tDCS, n = 4) over 4 weeks, with step initiation (SI) tests at pre-training, post-training, 1-week and 1-month follow-ups. Primary outcomes were: baseline vertical ground reaction force (B-vGRF), response time (RT) to initiate anticipatory postural adjustment (APA), and the retention of B-VGRF and RT. Results: a-tDCS paired with a 4-week VST program results in a significant increase in paretic weight loading at 1-week follow up. Furthermore, a-tDCS in combination with VST led to significantly greater retention of paretic BWB compared with the sham group at 1 week post-training. Clinical implications: The preliminary findings suggest a 4-week VST results in improved paretic limb weight bearing (WB) during SI in PCS. Furthermore, VST combined with a-tDCS may lead to better retention of gait improvements (NCT04437251) (https://classic.clinicaltrials.gov/ct2/show/NCT04437251).

15.
Bioinspir Biomim ; 19(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38430560

RESUMO

In animal and robot swimmers of body and caudal fin (BCF) form, hydrodynamic thrust is mainly produced by their caudal fins, the stiffness of which has profound effects on both thrust and efficiency of swimming. Caudal fin stiffness also affects the motor control and resulting swimming gaits that correspond to optimal swimming performance; however, their relationship remains scarcely explored. Here using magnetic, modular, undulatory robots (µBots), we tested the effects of caudal fin stiffness on both forward swimming and turning maneuver. We developed six caudal fins with stiffness of more than three orders of difference. For aµBot equipped with each caudal fin (andµBot absent of caudal fin), we applied reinforcement learning in experiments to optimize the motor control for maximizing forward swimming speed or final heading change. The motor control ofµBot was generated by a central pattern generator for forward swimming or by a series of parameterized square waves for turning maneuver. In forward swimming, the variations in caudal fin stiffness gave rise to three modes of optimized motor frequencies and swimming gaits including no caudal fin (4.6 Hz), stiffness <10-4Pa m4(∼10.6 Hz) and stiffness >10-4Pa m4(∼8.4 Hz). Swimming speed, however, varied independently with the modes of swimming gaits, and reached maximal at stiffness of 0.23 × 10-4Pa m4, with theµBot without caudal fin achieving the lowest speed. In turning maneuver, caudal fin stiffness had considerable effects on the amplitudes of both initial head steering and subsequent recoil, as well as the final heading change. It had relatively minor effect on the turning motor program except for theµBots without caudal fin. Optimized forward swimming and turning maneuver shared an identical caudal fin stiffness and similar patterns of peduncle and caudal fin motion, suggesting simplicity in the form and function relationship inµBot swimming.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Natação , Fenômenos Biomecânicos , Fenômenos Físicos , Nadadeiras de Animais
16.
Sensors (Basel) ; 24(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38474940

RESUMO

The effects of the use of reduced feedback frequencies on motor learning remain controversial in the scientific literature. At present, there is still controversy about the guidance hypothesis, with some works supporting it and others contradicting it. To shed light on this topic, an experiment was conducted with four groups, each with different feedback frequencies (0%, 33%, 67%, and 100%), which were evaluated three times (pre-test, post-test, and retention) during a postural control task. In addition, we tested whether there was a transfer in performance to another similar task involving postural control. As a result, only the 67% feedback group showed an improvement in their task performance in the post-test and retention evaluations. Nevertheless, neither group showed differences in motor transfer performance compared to another postural control task. In conclusion, the findings of this paper corroborate the hypothesis of guidance and suggest that the use of a reduced frequency of 67% is a better option for improving motor learning than options that offer feedback at a lower frequency, at all trials or not at all.


Assuntos
Aprendizagem , Equilíbrio Postural , Humanos , Adulto Jovem , Retroalimentação , Análise e Desempenho de Tarefas , Análise de Variância , Destreza Motora
17.
Cell Rep ; 43(4): 113958, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520691

RESUMO

The brain can generate actions, such as reaching to a target, using different movement strategies. We investigate how such strategies are learned in a task where perched head-fixed mice learn to reach to an invisible target area from a set start position using a joystick. This can be achieved by learning to move in a specific direction or to a specific endpoint location. As mice learn to reach the target, they refine their variable joystick trajectories into controlled reaches, which depend on the sensorimotor cortex. We show that individual mice learned strategies biased to either direction- or endpoint-based movements. This endpoint/direction bias correlates with spatial directional variability with which the workspace was explored during training. Model-free reinforcement learning agents can generate both strategies with similar correlation between variability during training and learning bias. These results provide evidence that reinforcement of individual exploratory behavior during training biases the reaching strategies that mice learn.


Assuntos
Membro Anterior , Animais , Membro Anterior/fisiologia , Camundongos , Comportamento Exploratório/fisiologia , Camundongos Endogâmicos C57BL , Aprendizagem/fisiologia , Masculino , Movimento , Reforço Psicológico , Feminino , Comportamento Animal
18.
Neurosci Lett ; 828: 137753, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554843

RESUMO

The primary somatosensory cortex (S1) is responsible for processing information related to tactile stimulation, motor learning and control. Despite its significance, the connection between S1 and the primary motor cortex (M1), as well as its role in motor learning, remains a topic of ongoing exploration. In the present study, we silenced S1 by the GABA receptor agonist muscimol to study the potential roles of S1 in motor learning and task execution. Our results show that the inhibition of S1 leads to an immediate impairment in performance during the training session and also a substantial reduction in performance improvement during post-test session on the subsequent day. To understand the underlying mechanism, we used intravital two-photon imaging to investigate the dynamics of dendritic spines of layer V pyramidal neurons and the calcium activities of pyramidal neurons in M1 after inhibition of S1. Notably, S1 inhibition reduces motor training-induced spine formation and facilitates the elimination of existing spines of layer V pyramidal neurons in M1. The calcium activities in M1 exhibit a significant decrease during both resting and running periods following S1 inhibition. Furthermore, inhibition of S1, but not M1, significantly impairs the execution of the acquired motor task in the well-trained animals. Together, these findings reveal that S1 plays important roles in motor learning and task execution.


Assuntos
Cálcio , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Células Piramidais/fisiologia , Inibição Psicológica
19.
Prog Brain Res ; 283: 305-325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538192

RESUMO

An increasing number of studies have linked engagement in sport or increased physical fitness with improved cognitive performance. Additionally, studies have employed physical activity as an intervention to help with cognition in aging individuals. Despite this, the underlying mechanism (or mechanisms) by which benefits occur remain unclear. We investigated whether improved trainability for individuals engaged in sport or fitness training might underlie such benefits. Specifically, we assessed motor skill performance and learning rates in young adult runners, baseball players, and "control" individuals who did not regularly engage in sport or exercise using an implicit motor sequence learning task. Better initial performance on the task was seen for both the runner group and the baseball group but no benefits were seen for the baseball/runner groups for rates of improvement on the task. This was the case for both non-specific learning (or general motor skill learning-learning not associated with specific sequences of responses) and for sequence-specific learning (or improvement on repeated sequences of responses that participants were not aware of). This pattern may mean that either engagement in sport/physical activity results in improvements that are transferable beyond the context of the sport/training activity or that engagement in sport/exercise may relate to initial differences in the motor competence of an individual. Further work could beneficially investigate learning in more directly cognitive-related tasks and consolidation/improvement of performance over more prolonged time periods. Importantly, assessment of a fitness/sport intervention on performance and learning rates may provide a better context for some of the benefits reported in cross-sectional investigations of the effects of sport/fitness on cognition and aid in determining which differences are due to engaging in exercise and which differences affect the tendency for such engagement.


Assuntos
Esportes , Adulto Jovem , Humanos , Estudos Transversais , Cognição/fisiologia , Aprendizagem , Exercício Físico , Destreza Motora/fisiologia
20.
Hum Mov Sci ; 95: 103214, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547792

RESUMO

OBJECTIVES: This study tested the effects of combining two bandwidth knowledge of performance (KP) on a complex sports motor skill. METHOD: Twenty-two elementary students were divided into combined wide and narrow bandwidth KP (WNG) and control group (CG). The task was the volleyball serve, whose goal was to hit the bull's eye center of a target lying on the floor on the opposite side of the court. The study was composed of a pre-test, acquisition phase and retention test, and had three measures (pre-test, intermediate test, and retention test) with 15 serves recorded each. The acquisition phase consisted of 252 trials. The WNG had a wide bandwidth KP in the first half of the acquisition phase and a narrow one in the second. The CG received KP in all trials. The effects of bandwidth KP were analyzed separately to infer parameters and skill structure learning. RESULTS: Both groups improved the skill structure from the first to the intermediate test, but only WNG also improved on the retention test. The parameters accuracy improved only on retention compared to the pre-test and intermediate test but had no difference between groups. CONCLUSION: Providing information using the bandwidth KP led to an initial engagement and prioritization of skill structure learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...